MHEWC
+8801711979179 (WhatsApp)
zmsajjad@yahoo.com

Urban Climate Risk Assessment Report ( GIS & Remote Sensing Tools based)

Multi-hazard Early Warning Center (MHEWC)

Conducted GIS & Remote Sensing Tools based assessment of A-Grade Municipalities and District Councils to Identify the most Climate vulnerable municipalities and District Council of Bangladesh.

Programme title: Municipal Investment Finance (MiF) of United Nations Capital Development Fund(UNCDF) , by Z M Sajjadul Islam

1.0         Glossary:

2.0          Introduction:

3.0         Context of Climate induced hazard

4.0          Methodological approach of assessment of Vulnerability of A-type Municipality:

4.1         Identification of Vulnerable A-Type Municipality:

4.1.1      Location map of all A-type Municipality and selected vulnerable of Municipality(A-type) of Bangladesh

4.2          Division wise GIS analysis and selection of vulnerable Municipality  :

4.2.1      Vulnerability analysis of A-type Municipality of Rajshahi Division

4.2.2     Vulnerability analysis of A-type Municipality of Rangpur Division:

4.2.3     Vulnerability analysis of A-type Municipality of Sylhet  Division :

4.2.4     Vulnerability analysis of A-type Municipality of Mymensingh Division :

4.2.5     Vulnerability analysis of A-type Municipality of Dhaka Division:

4.2.6     Vulnerability analysis of A-type Municipality of Khulna Division:

4.2.7     Vulnerability analysis of A-type Municipality of Barisal  Division:

4.2.8     Vulnerability analysis of A-type Municipality of Chottagram  Division:

4.3.        Vulnerability analysis with other variables ( HIES 2011, NCVA, Literacy,   WB Poverty, general employment )

4.3.1      Analysis  of vulnerability in terms of exposure of heat stress in the future ( 2070-2099) :

4.3.2      Poverty analysis  with  World Bank  head count poverty data  ( Upazila wise)

4.3.3      Primary employment on service

4.3.4     Municipality wise  Literacy rate 

5.0          5.0  Selecting vulnerable District Council

5.1         District wise ratio of poverty  ( District wise  head count ratio  of World Bank)

5.2         District Poverty ranking and selection  ( Source : District wise poverty head count ratio  which published in World Bank website in  November 10, 2016 )

5.3         Selection of  16 District Councils from rank

5.4         GIS Maps on selected  16 District Councils from rank

6.0          Reference

Acronym :

CEGIS    Center for Environmental and Geographic Information Services (CEGIS)

DDM      Department of Disaster Management

GIZ         Deutsche Gesellschaft für Internationale Zusammenarbeit

HIES       Household Income & Expenditure Survey (HIES)

IPCC       Intergovernmental Panel on Climate Change

IPUMS  Integrated Public Use Microdata Series project

LGED      Local Government Engineering Department

NCVA    nationwide climate vulnerability assessment

NWRD   National Water Rescue Database

  Glossary :

Adaptation :

The process of adjustment to actual or expected climate and its effects. In human systems, adaptation seeks to moderate harm or exploit beneficial opportunities. In natural systems, human intervention may facilitate adjustment to expected climate and its effects. See also Autonomous adaptation, Evolutionary adaptation, and Transformation

Adaptive  capacity:

The ability of systems, institutions, humans, and other organisms to adjust to potential damage, to take advantage of opportunities, or to respond to consequences.

Coping capacity:

The ability of people, institutions, organizations, and systems, using available skills, values, beliefs, resources, and opportunities, to address, manage, and overcome adverse conditions in the short to medium term. This glossary entry builds from the definition used in UNISDR (2009) and IPCC (2012a).

Exposure  :The presence of people, livelihoods, species or ecosystems, environmental services and resources, infrastructure, or economic, social, or cultural assets in places that could be adversely affected

Hazard :

The potential occurrence of a natural or human-induced physical event or trend, or physical impact, that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, and environmental resources. In this report, the term hazard usually refers to climate related physical events or trends or their physical impacts. 

Sensitivity:

The degree to which a system or species is affected, either adversely or beneficially, by climate variability or change. The effect may be direct (e.g., a change in crop yield in response to a change in the mean, range, or variability of temperature) or indirect (e.g., damages caused by an increase in the frequency of coastal flooding due to sea-level rise). 

Vulnerability :

The propensity or predisposition to be adversely affected. Vulnerability encompasses a variety of concepts including sensitivity or susceptibility to harm and lack of capacity to cope and adapt.

2.0  Introduction :

In Bangladesh Municipality (Municipal Corporations)  known as Paurasabha which are the  local governing bodies of the cities and towns in Bangladesh. There are 329 Municipality in eight divisions of Bangladesh. Municipality being categorized(type) as A , B & C based on the infrastructures , sprawling status and economical performance. According to LGED 183 A-type Municipally out of 329.

2.0  Introduction :

In Bangladesh Municipality (Municipal Corporations)  known as Paurasabha which are the  local governing bodies of the cities and towns in Bangladesh. There are 329 Municipality in eight divisions of Bangladesh. Municipality being categorized(type) as A , B & C based on the infrastructures , sprawling status and economical performance. According to LGED 183 A-type Municipally out of 329.

3.0 Context of Climate induced hazard:

Hazard can be defined according to IPCC AR5 as the potential occurrence of a natural or human-induced physical event or trend or physical impact that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems, and environmental resources. In this report, the term hazard usually refers to climate-related physical events or trends or their physical impacts.

Due to climate change Bangladesh is now susceptible to frequent and longer period   flooding, drought, sea level rise, frequent cyclone and storm surge, flash floods, etc. The country’s exposure to hazards is compounded by its population’s vulnerability and lack of resources.  The mostly agrarian economy and   the   high   population   density   leave   large   sections of the population exposed to hazards. The United  Nation’s  (UN)  2014  World  Risk  Report  named  Bangladesh  the  7th  most  ‘at  risk’  country( German watch 2018)   for disaster in the world.

  1. Flood is an annual phenomenon generally affecting 30 per cent of the country, but up to 70 per cent in extreme years. Flood-related fatalities are decreasing, but economic losses have been increasing over the years. The government has been developing and implementing various measures to better equip the country to deal with floods. Important initiatives include the flood action plan, flood hydrology study, flood management model study, national water management plan, national water policy, flood early warning study and construction of flood embankments and flood shelters. The flood damage potential is increasing due to climate change, urbanization, growth of settlements in flood-prone areas and overreliance on flood control works such as levees and reservoirs. 
  1. Flash floods occur during mid-April before the onset of the south-westerly monsoon. In particular, flash floods can decimate an annual rice crop when they occur at harvest time. Crop  decimation  occurred  four  times  between  2004  and  2014  in  the  Haor  region. The city of Sylhet is also prone to flash floods.
  2. Rain-fed floods generally happen in the deltas in the south-western part of the country and are increasing in low-lying urban areas. In 1988, record floods inundated 250 square kilometres (sq km) of Dhaka for 3 weeks. Chittagong   also   experiences   monsoon   related   floods.
  3. River floods are the most common; the areas are inundated during monsoon season along the river and in cases far beyond the riverbanks. Extreme flooding occurs when  the  rivers  flood  at  the  same  time,  or  when  the  rivers  flood  during  a  heavy  monsoon.  For  example,  in  2012  Bangladesh’s  northern  region  experienced  a  shorter  than  average  flood  period,  while  the  southwestern  region  of  the  country  experienced flooding for 49 days.
  4. Storm surge floods occur along the coastal areas of Bangladesh, which has a coastline of about 800 km northern part of Bay of Bengal
  • Drought is seasonal in north-western parts of Bangladesh experience drought in the crop season. During the last 50 years, Bangladesh suffered about severe 20 drought episodes. As much as 20 per cent of the main crop – wet season paddy – may be lost in a typical year due to drought. Drought-prone areas are also affected by cold waves with impacts on human health. There is opportunity for supporting resilience to drought through institutional initiatives. The consultations for developing NPDM 2016-2020 strongly suggested the need for addressing drought though structural and non-structural measures.
  • Severe cyclones with storm surges sometimes in excess of ten meters frequently impact Bangladesh’s low-lying coast. GoB has a well-coordinated cyclone forecasting, early warning and evacuation system and the cyclone mortality rate has been reduced greatly from 300,000 in 1971 to 138,882 in 1991 for the same category of cyclone. However, growing and higher concentration of assets has resulted in increasing economic losses. Tornadoes are seasonal and occur in the pre-monsoons season. The frequency of tornadoes in Bangladesh is among the highest in the world. The Brahmanaria tornado of 2013 struck 20 villages and killed 31 people and injured around 500 in Brahmanbaria district.
  1. Riverbank erosion is a common problem in Bangladesh due to the deltaic topography and it has been forcing people to migrate or resettle. Riverbank erosion has rendered millions homeless; the majority of slum dwellers in large urban and metropolitan towns and cities are victims of erosion. The major rivers like the Jamuna, the Ganges, the Padma, the Lower Meghna, Arial Khan and Teesta are highly erosion-prone. Structural interventions are costly and need to be complemented by non-structural measures, such as erosion prediction and warning. From 2005, prediction activities were funded by the Jamuna-Meghna River Erosion Mitigation Project (JMREMP) and EMIN project of the BWDB and WARPO, and in 2008, by UNDP. 
  • Salinity intrusion is an increasing hazard in the coastal areas of Bangladesh, posing a threat to ecosystems, livelihoods and public health and diminishing access to freshwater for household and commercial use. About 20 million people in the coastal areas of Bangladesh are affected by salinity in their drinking water. Bangladesh Water Development Board (BWDB) undertook studies on groundwater availability and found in some coastal districts there was no freshwater layer as deep as 300 meters; in many cases, saline water was found in aquifers at 200 meters.

4.0  Methodological approach of assessment of Vulnerability of A-type Municipality:

Typically quantitative assessment of vulnerability implies that the first two components together represent the potential impact and adaptive capacity is the extent to which these impacts can be averted. Thus vulnerability is calculated by potential impact (PI) minus adaptive capacity (AC). e.g. 

Formula : Vulnerability(V) = Potential impact (PI) [Exposure (E) + Sensitivity (S)] – Adaptive Capacity (AC)   

Calculation of vulnerable Municipality ( V) =   PI  [Spatial Intensity of Multi-hazard ( E+S)] –  AC (Ranking of % Poverty, % literacy, % employment ).

Main weightage given to spatial distribution of physical hazards (expose & sensitivity in the context of landscape) which occurs in geographical position geo-physical settings, global and regional climatic context etc., and this principal variable being generalized by other socio-economical attributes from census survey)     

Sources of datasets used :

Based on available datasets on spatial distribution of hazards in Bangladesh from available secondary sources e.g 

  1. A-type Municipality data from LGED website.
  2. Multi hazards: National Water Rescue Database ( NWRD, 2011), Bangladesh Delta Plan(BDP) 2100 (BDP2100 study in 2018 ),  CEGIS multi-hazard GIS analytical maps (2016), GIZ conducted CVRA Dec. 2018, DDM Risk Atlas Oct, 2016 etc.  
  3. Field varication also being carried by secondary sources e.g satellite image (google earth, Microsoft bing image map) for verifying the geographical position of Municipality and proximity to climatic hotspot.
  4. Social vulnerability attribute information from BBS Census survey 2011, HIES (municipality statistics, Municipality wise literacy rate, and world Bank headcount poverty data – prepared in  November 2016 (combined by the 2010 Bangladesh Poverty Maps, the IPUMS sample from the 2011 Bangladesh Census of Population and Housing, and the 2012 Undernutrition Maps of Bangladesh) , Primary employment: Services, National avg (%)

4.1 Identification of Vulnerable A-Type Municipality:

Considering the geographical settings, and recurrently and historically occurrence of hazards all over the country being synthesized and analized with GIS Maps (GIS Map & data from secondary source), and verification done by overlying hotspot on the ESRI satellite image (world bing image) with ArcGIS software. Total 183 A-Type Municipality inserted as layer and superimposed over the multi-hazard layer on GIS analytical map for getting the vulnerability type and factor.

Multiple factors being e.g. topographical characteristics, riverine morphology, geographical position, intensity & frequency of the occurrence of hazard etc being considered for selection of vulnerable 61, moderate vulnerable 41 and most vulnerable 10 of A-grade municipality.  The closest proximity to climatic hotspots, severity of exposure & vulnerability being further considered for choosing 10 most vulnerable A-grade municipality .

4.1.1  Location map of all A-type Municipality and selected vulnerable of Municipality(A-type) of Bangladesh

Figure 1 : A-Type Municipality(Pourashava) classified  by severity of natural hazards ( Note : Stress the map for more clear view)

Data Source: a) National Water Rescue Database ( NWRD, 2011), Bangladesh Delta Plan(BDP) 2100,  CEGIS, Prepared by Z M Sajjadul Islam

  • Division wise GIS analysis and selection of vulnerable Municipality  :  

4.2.1 Vulnerability analysis of A-type Municipality of Rajshahi Division:

Figure 2 : Map  Rajshahi Division, Prepared by Z M Sajjadul Islam

Table 1 : Most Vulnerable Municipality from Rajshahi Division

Kakonhat municipality located in the Barind track region and falling under drought of Bangladesh. Other two most vulnerable municipality spotted as Sujanagar of Pabna and Belkuchi of Sirajganj because affected by multiple hazards riverine Flood & Erosion.

4.2.2 Vulnerability analysis of A-type Municipality of Rangpur Division:

Figure 3 : Map  Rangpur Division, Prepared by Z M Sajjadul Islam

Table2 : Moderate Vulnerable Municipality from Rangpur Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)Household% population affected by NatHazPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
KuragramKurigramRiverine Flood + ErosionModerate2777252         2,85763.21715956%58.02
PanchagarhPanchagarhRiverine, Moderate flash flood  Moderate5.5316017         2,89665.93788 38%24.271
KurigramNageswariRiverine, Moderate flash flood  Moderate13.32102988   7,73274.82303765.013.321  
GaibandhaGaibandhaRiverine, Moderate flash flood Moderate3.39921200        6,25471.5496744.816

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

Kurigram municipality geographically located on the bank of Dharla river. In case of 1998 floods this township experience flooding over the eastern part. Pachagarh municipality experience moderate flash flood when monsoon characterized by torrential precipitation on the upstream basin .    

4.2.3 Vulnerability analysis of A-type Municipality of Sylhet  Division :

Figure 4: Map  Sylhet Division, Prepared by Z M Sajjadul Islam

Table 3: Severe and Moderate Vulnerable A-type Municipality of Sylhet Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)Household% population affected by NatHazPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
SunamganjSunamganjFlash Flood + ErosionSevere flash &  riverine  flooding and erosion11.125461         2,29844.658334925.170
SunamganjChhatakFlash Flood + ErosionSevere to Moderate17.365332         3,77460.51192647%23.674
HabiganjChunarughatFlash Flood + ErosionModerate16.5932444         1,96662.2565227.568
HabiganjNabiganjRiverine Flood + ErosionModerate9.37934015         3,63068.9641626.870
HabiganjHabiganjRiverine Flood + ErosionModerate8.97969512         7,74971.31351716.989
SylhetGolapganjRiverineModerate4.9820019         4,02079.339854414.981

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

Sunamganj is the most vulnerable A-type municipality beside Chatak under Sylhet Division. In every given season this township experience flash flooding and localized riverine flooding. Chatak and Golapganj considered as moderate vulnerable municipality.

4.2.4 Vulnerability analysis of A-type Municipality of Mymensingh Division :

Figure 5: Map  Mymensing  Division, Prepared by Z M Sajjadul Islam

Table 4: Severe and Moderate Vulnerable A-type Municipality of Sylhet Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
JamalpurJamalpurRiverine  Flood + ErosionModerate53.31427642,71862.13561949.88  
JamalpurMelandahaRiverine  Flood + ErosionModerate19.251656986144.4399747.2  12
NetrokonaMohanganjRiverine  Flood + ErosionModerate6.97271933,90165.8578634.3  47
MymensinghGafargaonRiverine  Flood + ErosionModerate5.39293255,44167.7651343.9  21

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

4.2.5 Vulnerability analysis of A-type Municipality of Dhaka Division:

Figure 6: Map  Dhaka   Division, Prepared by Z M Sajjadul Islam

Table 5: Severe and Moderate Vulnerable A-type Municipality of Dhaka Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
RajbariGoalandaRiverine  Flood + ErosionSevere27.259148     2,17963.31146050.55
DhakaDoharRiverine  Flood + ErosionModerate7.9919651         2,45955.9388923.936  
ShariatpurDamuddyaRiverine  Flood + ErosionModerate8.0224154   3,01265.9552747.910
MadaripurShibcharRiverine  Flood + ErosionModerate43.998355     2,23965.92210538.832
FaridpurFaridpurRiverine  Flood + ErosionModerate10.521914       2,08763.6527633.948
MunshiganjMunshiganjRiverine  Flood + ErosionModerate12.95  31,320 2,418.5345.7761530.859
NarsingdiNarsingdiRiverine  Flood + ErosionModerate14.75185128     40,66164.4883722.882
RajbariRajbariRiverine  Flood + ErosionModerate32.39113322       3,49969.32689638.735
ShariatpurShariatpurRiverine  Flood + ErosionModerate24.9249535       1,98862.51090849.88
GopalganjTungiparaRiverine  Flood + ErosionModerate4.8518663       3,84858.5415642.625
KishoreganjBhairabRiverine  Flood + ErosionModerate10.5921914         2,08763.6527633.9

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

Goalanda municipality annexed to a grater confluence of Padma and Brahmaputra river and highly vulnerable to multiple hazards Riverine  Flood & Erosion

4.2.6 Vulnerability analysis of A-type Municipality of Khulna Division:

Figure 7: Map  Kuhulna   Division, Prepared by Z M Sajjadul Islam

Table 6: Severe and Moderate Vulnerable A-type Municipality of Khulna Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
BagerhatMorrelganjTidal surge, High Salinity, Sea level raise (SLR)Severe17.6172017   9,774663351746.512
Khulna PaikgachaTidal surge, High Salinity, Sea level raise (SLR)Moderate27.7841608              1,49855.3881542.426
SatkhiraSatkhiraTidal surge, High Salinity, Sea level raise (SLR)Severe6.35233143,67157.5451343.122
KushtiaKushtiaRiverine flood  and erosionModerate6.53  20522     3,14360.342183.099  

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

From the analysis Morrelganj of Bagerhat District identified as most vulnerable  over the southern bay proximity and similarly Satkhira surrounded by multiple hazards as well in terms of SLR, salinity intrusion and recent cyclonic tract to this region.

4.2.7 Vulnerability analysis of A-type Municipality of Barisal  Division:

Figure 8: Map  Barisal    Division ( legend from Bangladesh map  ), Prepared by Z M Sajjadul Islam

Table 7 : Severe and Moderate Vulnerable A-type Municipality of Khulna Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)Household% population affected by NatHazPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
PatuakhaliGalachipaTidal surge & Salinity, Sea level raise (SLR)Severe12.5729098     2,31567.765695826.067
PatuakhaliKalaparaModerate tidal surge & Salinity, Sea level raise (SLR)Moderate9.9555323       5,56064.3106135620.377
BargunaBargunaHigh tidal surge+ moderate Salinity, Sea level raise (SLR)Moderate15.5732235  2,07075.973534719.278
PirojpurMathbariaHigh tidal surge+ moderate Salinity, Sea level raise (SLR)Moderate29.4127700   94253.865414438.035

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

Two municipality under Barisal division are highly vulnerable in terms of proximity to river and bay. The Galachipa Municipality under Patuakhai District identified as most vulnerable municipality and Amtali under Barguna District considered as high- to- moderate vulnerable, but the landscape and infrastructures of the township is better than Galachipa and Kalapara. 

4.2.7 Vulnerability analysis of A-type Municipality of Chottagram  Division:

Figure 9: Map  Chottagram   Division, Prepared by Z M Sajjadul Islam

Table 8 : Severe and Moderate Vulnerable A-type Municipality of Chittagong Division

DistrictMunicipalityType of HazardType of VulnerabilityArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Rank 1 >= high to large number represent as low
ChandpurChandpurRiverine Flooding & severe erosionSevere5.1320606 4,01756.6471245.514
ChandpurChengercharRiverine Flooding & severe erosionSevere22.6647477              2,09576963549.96
KhagrchhariKhagrachhariFlash and Riverine FloodingModerate13.147278  3,623711024719.585
CumillaChouddagramRiverine/Flash FloodModerate11.98443643,70355.6782434.442
Cox  BazarChakariaRiverine/Flash FloodModerate27.2336691    7,88459.2788428.556
BrahmanbariaNabinagarRiverine FloodingModerate12.434148 2,74761.5750530.554
BrahmanbariaAkhauraRiverine FloodingModerate16.450068  3,04952.21101226.963
BrahmanbariaBrahmanbariaRiverine FloodingModerate15.7118992  7,57453.62405726.071
ChandpurMatlabRiverine FloodingModerate13.427595   2,05654.6601651.55

Data source : a) BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014, b) % of Pop affected by national hazards  of GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018, c) Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

Most vulnerable municipalities are  Chengerchar and Chandpur of Chandpur district for positioning at the bank of Meghna and recurrently experience multiple hazards Riverine flooding erosion. Among the other vulnerable districts Khagrachari which heavily being impacted by flash and riverine floods and its becoming recurrent over the past 10 years during monsoon season.

Table 9: Selected  10 Most vulnerable Municipality  : Data source : BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014
SLDivisionDistrictMunicipality/ PourashavaA-Type PourashavaArea (sq. km.)Population (Both sex)Population DensityLiteracy Rate (7+years)HouseholdPoverty headcount ratio (%)Poverty Rank 1 >= high to largeMulti HazardProximity to climatic hotspot(River, Sea and others)
1KhulnaBagerhatMorrelganjA17.6172017        9,774663351746.512Moderate tidal FloodingBoleshwar River
2ChattogramChandpurChengarcharA22.6647477        2,09576963549.96Severe river FloodingBeside Meghna
3ChattogramChandpurChandpurA5.1320606        4,01756.6471245.514Severe river FloodingBeside Meghna
4RajshahiPabnaSujanagarA26.942299        1,57281.7994535.440Severe river FloodingBeside Padma, Severe flood prone
5BarishalPatuakhaliGalachipaA12.5729098        2,31567.7656926.067Severe tidal floodingBeside Galachipa
6DhakaRajbariGoalandaA27.1559148        2,17963.31146050.55Severe river Flooding 
7RajshahiRajshahiKakonhatA24.9249535        1,98862.51090844.119Severe Dorught ProneSevere Dorught Prone
8KhulnaSatkhiraSatkhiraA6.3523314        3,67157.5451343.122Moderate Tidal  FloodingSLR, Tidal Floods, Salinity
9RajshahiSirajganjBelkuchiA28.49158913        5,57863.23555642.525Severe River FloodingBeside Brahmaputra River
10SylhetSunamganjSunamganjA11.0825461        2,29844.6583325.170Severe Flash FloodingConfluence of Surma and Wahumgi river
Table 10:  Selected 41  A- type Moderate Vulnerable Municipalities   , Data source : BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014
SLDivisionDistrictPourashavaA-Type PourashavaArea (sq. km.)WardPopulation (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Poverty Rank 1 >= high to large number as lowMulti HazardProximity to climatic hotspot(River, Sea and others)
 BarishalBargunaAmtaliA6.22915418       2,47976.7339522.883Severe tidal floodingBeside Payra River
 BarishalBargunaBargunaA15.57932235       2,07075.9735319.286Severe tidal floodingBetween  Payra & BishKhali River
 ChattogramBrahmanbariaAkhauraA16.42950068       3,04952.21101226.969Moderate river FloodingBeside Titas riiver
 ChattogramBrahmanbariaNabinagarA12.43934148       2,74761.5750530.560Moderate river FloodingBeside Meghna
 ChattogramBrahmanbariaBrahmanbariaA15.719118992       7,57453.62405726.071Moderate river Flooding 
 ChattogramChandpurMatlabA13.42927595       2,05654.6601651.55Moderate river Flooding 
 ChattogramCox’s BazarChakoriaA27.23936691       7,88459.2788428.562Moderate river   Flooding 
 ChattogramCumillaChouddagramA11.98944364       3,70355.6782434.446Moderate River Flooding 
 DhakaDhakaDoharA7.99919651       2,45955.9388923.979Severe river FloodingBeside Padma
 DhakaFaridpurFaridpurA19.079122425       6,18977.12757438.336Moderate river Flooding 
 RangpurGaibandhaGaibandhaA3.39921200       6,25471.5496744.816Moderate river Flooding 
 DhakaGopalganjTungiparaA4.85918663       3,84858.5415642.625Moderate river Flooding 
 SylhetHabiganjNabiganjA9.37934015       3,63068.9641626.870Moderate Flash Flooding 
 SylhetHabiganjHabiganjA8.97969512       7,74971.31351716.989  
 MymensinghJamalpurJamalpurA53.2812142764       2,71862.13561949.89Moderate river FloodingBeside old Brahmaputra
 MymensinghJamalpurMelandahaA19.25916569          86144.4399747.212Moderate river Flooding 
 KhulnaKhulnaPaikgachhaA27.78941608       1,49855.3881542.427Moderate river Flooding 
 DhakaKishoreganjBhairabA10.5921914       2,08763.6527633.948Moderate river FloodingBeside Meghna
 RangpurKurigramNageswariA13.329102988       7,73274.82303765.01Moderate river FloodingBeside Kaljani & Brahmaputra
 RangpurKurigramKurigramA27.04977252       2,85763.21715958.03Moderate river FloodingBeside Dharla
 KhulnaKushtiaKushtiaA6.53920522       3,14360.342183.099Moderate river FloodingBeside Gorai
 DhakaMadaripurShibcharA43.92998355       2,23965.92210538.834Moderate river FloodingClose to Padma
 DhakaMadaripurMadaripurA7.7921930       2,84850.2407735.045Moderate river Flooding 
 DhakaMunshiganjMunshiganjA12.959                   31,320 2,418.5345.7761530.859Moderate river Flooding 
 DhakaNarsingdiNarsingdiA14.759185128     40,66164.4883722.882  
 RajshahiNatoreSingraA29.39 33192       1,12956.8795537.838  
 MymensinghNetrokonaMohanganjA6.97 27193       3,90165.8578634.347Moderate river & flash  Flooding 
 RajshahiPabnaBeraA14.14953157       3,75951.21053939.432Moderate river FloodingBeside  Gumani and Brahmaputra
 RajshahiPabnaSanthiaA42962289       1,48349.71529833.153Moderate river Flooding 
 BarishalPatuakhaliKalaparaA9.95955323       5,56064.31061320.384Severe tidal floodingTidal Flooding
 BarishalPirojpurMathbariaA29.41927700          94253.8654138.037Severe tidal flooding 
 DhakaRajbariRajbariA32.399113322       3,49969.32689638.735Moderate tidal surge 
 RajshahiRajshahiCharghatA10.23927335       2,67262.6712831.455Severe river FloodingBank of  Padma
 ChattogramRangamatiRangamatiA64.75 84000       1,29773.1183557.397  
 DhakaShariatpurShariatpurA24.92 49535       1,98862.51090849.88Moderate river FloodingBeside Padma
 DhakaShariatpurDamuddyaA8.02924154       3,01265.9552747.911Moderate river FloodingBeside Padma
 RajshahiSirajganjShahjadpurA11.07964507       5,82756.11422641.829Moderate river FloodingBeside Padma,
 RajshahiRajshahiGodagariA11.07964507         5,82756.11422644.119Moderate river Flooding 
 RajshahiSirajganjUllaparaA12.07 47693       3,95161.91052636.643  
 SylhetSunamganjChhatakA17.31965332       3,77460.51192623.680Severe Flash FloodingBeside Surma river
 SylhetSylhetGolapganjA4.98920019       4,02079.3398514.990Moderate river FloodingBeside Surma river
Table 10:  Selected 61  A- type overall ( Moderate 41 +   vulnerable 10   yellow + most vulnerable  10) Vulnerable Municipalities , Data source : BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014
SLDistrictPourashavaA-Type PourashavaArea (sq. km.)WardPopulation (Both sex)Population DensityLiteracy Rate(7+years)HouseholdPoverty headcount ratio (%)Poverty Rank 1 >= high to large number as lowMulti HazardProximity to climatic hotspot(River, Sea and others)
 BagerhatMonglaA11.85917311        1,46168.7406741.928Moderate tidal Flooding 
 BargunaAmtaliA6.22915418        2,47976.7339522.883Severe tidal floodingBeside Payra River
 BargunaBargunaA15.57932235        2,07075.9735319.286Severe tidal floodingBetween  Payra & BishKhali River
 BarishalMuladiA16.96920490        1,20862.6452858.22  
 BrahmanbariaAkhauraA16.42950068        3,04952.21101226.969Moderate river FloodingBeside Titas riiver
 BrahmanbariaNabinagarA12.43934148        2,74761.5750530.560Moderate river FloodingBeside Meghna
 BrahmanbariaBrahmanbariaA15.719118992        7,57453.62405726.071Moderate river Flooding 
 ChandpurMatlabA13.42927595        2,05654.6601651.55Moderate river Flooding 
 ChandpurChengarcharA22.66947477        2,09576963549.97Severe river FloodingBeside Meghna
 ChandpurChandpurA5.13920606        4,01756.6471245.515Severe river FloodingBeside Meghna
 Cox’s BazarChakoriaA27.23936691        7,88459.2788428.562Moderate river   Flooding 
 CumillaChouddagramA11.98944364        3,70355.6782434.446Moderate River Flooding 
 DhakaDoharA7.99919651        2,45955.9388923.979Severe river FloodingBeside Padma
 FaridpurFaridpurA19.079122425        6,18977.12757438.336Moderate river Flooding 
 GaibandhaGaibandhaA3.39921200        6,25471.5496744.816Moderate river Flooding 
 GopalganjTungiparaA4.85918663        3,84858.5415642.625Moderate river Flooding 
 HabiganjChunarughatA16.5932444        1,96662.2565227.568Moderate to severe flash floodingBeside Khoi nRiver( from india)
 HabiganjNabiganjA9.37934015        3,63068.9641626.870Moderate Flash Flooding 
 HabiganjHabiganjA8.97969512        7,74971.31351716.989  
 JamalpurJamalpurA53.2812142764        2,71862.13561949.89Moderate river FloodingBeside old Brahmaputra
 JamalpurMelandahaA19.25916569           86144.4399747.212Moderate river Flooding 
 KhagrchhariKhagrachhariA13.05947278        3,623711024719.585  
 KhulnaPaikgachhaA27.78941608        1,49855.3881542.427Moderate river Flooding 
 KishoreganjBhairabA10.5921914        2,08763.6527633.948Moderate river FloodingBeside Meghna
 KurigramNageswariA13.329102988        7,73274.82303765.01Moderate river FloodingBeside Kaljani & Brahmaputra
 KurigramKurigramA27.04977252        2,85763.21715958.03Moderate river FloodingBeside Dharla
 KushtiaKushtiaA6.53920522        3,14360.342183.099Moderate river FloodingBeside Gorai
 MadaripurKalkiniA14.22962690        4,40973.11411233.252Moderate river Flooding 
 MadaripurShibcharA43.92998355        2,23965.92210538.834Moderate river FloodingClose to Padma
 MadaripurMadaripurA7.7921930        2,84850.2407735.045Moderate river Flooding 
 MunshiganjMirkadimA30.92959286        1,917631368230.858Moderate river Flooding 
 MunshiganjMunshiganjA12.959      31,320  2,418.5345.7761530.859Moderate river Flooding 
 MymensinghGafargaonA5.39929325        5,44167.7651343.921Moderate river FloodingBeside old Brahmaputra
 NarsingdiNarsingdiA14.759185128      40,66164.4883722.882  
 NatoreSingraA29.39 33192        1,12956.8795537.838  
 NetrokonaMohanganjA6.97 27193        3,90165.8578634.347Moderate river & flash  Flooding 
 PabnaBeraA14.14953157        3,75951.21053939.432Moderate river FloodingBeside  Gumani and Brahmaputra
 PabnaSujanagarA26.9942299        1,57281.7994535.444Severe river FloodingBeside Padma, Severe flood prone
 PabnaSanthiaA42962289        1,48349.71529833.153Moderate river Flooding 
 PanchagarhPanchagarhA5.53916017        2,89665.9378824.277Moderate Flash FloodingBeside Korotoa River and Talma in ease side
 PatuakhaliGalachipaA12.57929098        2,31567.7656926.073Severe tidal floodingBeside Galachipa
 PatuakhaliKalaparaA9.95955323        5,56064.31061320.384Severe tidal floodingTidal Flooding
 PirojpurMathbariaA29.41927700           94253.8654138.037Severe tidal flooding 
 RajbariGoalandaA27.15959148        2,17963.31146050.56Severe river Flooding 
 RajbariPangshaA26.29938704        1,47247.9931945.714Moderate river FloodingBeside Padma
 RajbariRajbariA32.399113322        3,49969.32689638.735Moderate tidal surge 
 RajshahiKakonhatA24.92949535        1,98862.51090844.120Severe Dorught ProneSevere Dorught Prone
 RajshahiBaghaA11.69 27623        2,36355.4704433.649  
 RajshahiCharghatA10.23927335        2,67262.6712831.455Severe river FloodingBank of  Padma
 RangamatiRangamatiA64.75 84000        1,29773.1183557.397  
 SatkhiraSatkhiraA6.35923314        3,67157.5451343.123Moderate Tidal  FloodingSLR, Tidal Floods, Salinity
 ShariatpurShariatpurA24.92 49535        1,98862.51090849.88Moderate river FloodingBeside Padma
 ShariatpurDamuddyaA8.02924154        3,01265.9552747.911Moderate river FloodingBeside Padma
 SirajganjBelkuchiA28.499158913        5,57863.23555642.526Severe River FloodingBeside Brahmaputra River
 SirajganjShahjadpurA11.07964507        5,82756.11422641.829Moderate river FloodingBeside Padma,
 RajshahiGodagariA11.07964507         5,82756.11422644.119Beside padmaModerate river Flooding
 SirajganjSirajganjA5.33919866        3,72762.8378436.742Severe river FloodingBeside Brahmaputra River
 SirajganjUllaparaA12.07 47693        3,95161.91052636.643  
 SunamganjSunamganjA11.08925461        2,29844.6583325.176Severe Flash FloodingConfluence of Surma and Wahumgi river
 SunamganjChhatakA17.31965332        3,77460.51192623.680Severe Flash FloodingBeside Surma river
 SylhetGolapganjA4.98920019        4,02079.3398514.990Moderate river FloodingBeside Surma river

4.3.  Vulnerability analysis with other variables ( HIES 2011, NCVA, Literacy,   WB Poverty, general employment )

4.3.1  Analysis  of vulnerability in terms of exposure of heat stress in the future ( 2070-2099) : A-type Municipality superimposed over the GIZ NCVA map (nationwide climate vulnerability assessment in Bangladesh)  

Figure 10: Map  heat stress , Data source : Map ofGIZ NCVA map (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018( Prepared by Z M Sajjadul Islam )

4.3.2    Poverty analysis  with  World Bank  head count poverty data  ( Upazila wise)

Figure 11: Map Poverty 

Data Source : Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 )

4.3.3    Primary employment on service :- Vulnerable Municipality  normalized by Primary employment at service sector( Upazila wise) of World Bank Data  on Primary employment on service :

Figure 11: Map Poverty , Data Source : Head county poverty data of World Bank ( published in World Bank website in  November 10, 2016 ), Prepared by Z M Sajjadul Islam

4.3.3    Primary employment on service :- Vulnerable Municipality  normalized by Primary employment at service sector( Upazila wise) of World Bank Data  on Primary employment on service :

Figure 12: Employment Status , Source : Primary employment on service data of World Bank ( published in World Bank website in  November 10, 2016 ), Prepared by Z M Sajjadul Islam

4.3.4     Municipality wise Literacy rate  :- Vulnerable Municipality  normalized by literacy rate (both sex)

Prepared by Z M Sajjadul Islam

5.0 Selection of  vulnerable District Council:

5.1  District wise ratio of poverty  ( District wise  head count ratio  of World Bank)

Figure 13: District poverty map, Source : District wise  head count ratio  of World Bank ( published in World Bank website in  November 10, 2016 )Prepared by Z M Sajjadul Islam ,

5.2 District Poverty ranking and selection ( Source : District wise poverty head count ratio  which published in World Bank website in  November 10, 2016 )

Barisal Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
BARISALBARISAL54.81 
BARISALPIROJPUR44.12Poorer District
BARISALJHALOKATI40.53Middle point of the rank
BARISALBHOLA33.24 
BARISALPATUAKHALI25.85Richer District
BARISALBARGUNA19.06 

Chittagong Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
CHITTAGONGCHANDPUR51.01 
CHITTAGONGBANDARBAN40.12 
CHITTAGONGCOMILLA37.93Poorer District
CHITTAGONGCOX’S BAZAR32.74 
CHITTAGONGLAKSHMIPUR31.25 
CHITTAGONGBRAHMANBARIA30.06Middle point of the rank
CHITTAGONGFENI25.97 
CHITTAGONGKHAGRACHHARI25.58 
CHITTAGONGRANGAMATI20.39Richer District
CHITTAGONGCHITTAGONG11.510 
CHITTAGONGNOAKHALI9.611 

Dhaka Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
DHAKASHARIATPUR52.61 
DHAKAGOPALGANJ42.72 
DHAKARAJBARI41.93Poorer District
DHAKAFARIDPUR36.34 
DHAKAMADARIPUR34.95 
DHAKAKISHOREGANJ30.36
DHAKATANGAIL29.77Middle point of the rank
DHAKAMUNSHIGANJ28.78 
DHAKANARAYANGANJ26.19
DHAKANARSINGDI23.710 
DHAKAGAZIPUR19.411Richer District
DHAKAMANIKGANJ18.512 
DHAKADHAKA15.713 

Mymensingh Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
MYMENSINGHJAMALPUR51.11 
MYMENSINGHMYMENSINGH50.52Poorer District
Middle point of the rank
MYMENSINGHSHERPUR48.43Richer District
MYMENSINGHNETRAKONA35.34 

Khulna Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
KHULNASATKHIRA46.31 
KHULNAMAGURA45.42 
KHULNABAGERHAT42.83Poorer District
KHULNAJESSORE39.04 
KHULNAKHULNA38.85Middle point of the rank
KHULNACHUADANGA27.76 
KHULNAJHENAIDAH24.77
KHULNANARAIL20.08Richer District
KHULNAMEHERPUR15.29 
KHULNAKUSHTIA3.610 

Rajshahi Division :


Division Name
Zila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
RAJSHAHISIRAJGANJ38.71 
RAJSHAHINATORE35.12Poorer District
RAJSHAHIPABNA31.53 
RAJSHAHIRAJSHAHI31.44 
RAJSHAHIJOYPURHAT26.75Middle point of the rank
RAJSHAHICHAPAI NABABGANJ25.36
RAJSHAHINAOGAON16.97Richer District
RAJSHAHIBOGRA16.68 

Rangpur Division :


Division Name
Zila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
RANGPURKURIGRAM63.71 
RANGPURGAIBANDHA48.02Poorer District
RANGPURRANGPUR46.23
RANGPURDINAJPUR37.94Middle point of the rank
RANGPURNILPHAMARI34.85 
RANGPURLALMONIRHAT34.56
RANGPURTHAKURGAON27.07Richer District
RANGPURPANCHAGARH26.78 

Sylhet Division :

Division NameZila NamePoverty headcount ratio (%)Rank (Poorest to Richest )In the middle of raking : Poor & Rich Districts
SYLHETSUNAMGANJ26.01 
SYLHETMAULVIBAZAR25.72Poorer District
    Middle point of the rank
SYLHETHABIGANJ25.33Richer District
SYLHETSYLHET24.14 

Source :World Bank  https://www.worldbank.org/en/data/interactive/2016/11/10/bangladesh-poverty-maps

5.3   Selection of  16 District Councils from rank

Table  11 :  vulnerable district councils

SLDivision NameZila NamePoverty headcount ratio (%)Rank ( Poor > 1(higher %) to rich  64) ( Lower %)In the middle of raking : Poor & Rich Districts
 BARISALPIROJPUR44.112Poorer District
 BARISALPATUAKHALI25.845Richer District
 CHITTAGONGCOMILLA32.721Poorer District
 CHITTAGONGRANGAMATI20.353Richer District
 DHAKARAJBARI41.915Poorer District
 DHAKAGAZIPUR26.155Richer District
 MYMENSINGHMYMENSINGH50.56Poorer District
 MYMENSINGHSHERPUR48.47Richer District
 KHULNABAGERHAT42.813Poorer District
 KHULNANARAIL24.754Richer District
 RAJSHAHINATORE31.525Poorer District
 RAJSHAHINAOGAON25.358Richer District
 RANGPURGAIBANDHA46.28Poorer District
 RANGPURTHAKURGAON34.539Richer District
 SYLHETMAULVIBAZAR25.746Poorer District
 SYLHETHABIGANJ25.349Richer District

Table 12 : All District with poverty rank  

SLDivision NameZila NamePoverty headcount ratio (%)Rank ( Poor > 1(higher %) to rich  64) ( Lower %)
1.         BARISALBARISAL54.82
2.         BARISALPIROJPUR44.112
3.         BARISALJHALOKATI40.516
4.         BARISALBHOLA33.229
5.         BARISALPATUAKHALI25.845
6.         BARISALBARGUNA1956
7.         CHITTAGONGCHANDPUR515
8.         CHITTAGONGBANDARBAN40.117
9.         CHITTAGONGCOMILLA37.921
10.      CHITTAGONGCOX’S BAZAR32.730
11.      CHITTAGONGLAKSHMIPUR31.233
12.      CHITTAGONGBRAHMANBARIA3035
13.      CHITTAGONGFENI25.944
14.      CHITTAGONGKHAGRACHHARI25.547
15.      CHITTAGONGRANGAMATI20.353
16.      CHITTAGONGCHITTAGONG11.562
17.      CHITTAGONGNOAKHALI9.663
18.      DHAKASHARIATPUR52.63
19.      DHAKAGOPALGANJ42.714
20.      DHAKARAJBARI41.915
21.      DHAKAFARIDPUR36.323
22.      DHAKAMADARIPUR34.926
23.      DHAKAKISHOREGANJ30.334
24.      DHAKATANGAIL29.736
25.      DHAKAMUNSHIGANJ28.737
26.      DHAKANARAYANGANJ26.142
27.      DHAKANARSINGDI23.752
28.      DHAKAGAZIPUR19.455
29.      DHAKAMANIKGANJ18.557
30.      DHAKADHAKA15.760
31.      KHULNASATKHIRA46.39
32.      KHULNAMAGURA45.411
33.      KHULNABAGERHAT42.813
34.      KHULNAJESSORE3918
35.      KHULNAKHULNA38.819
36.      KHULNACHUADANGA27.738
37.      KHULNAJHENAIDAH24.750
38.      KHULNANARAIL2054
39.      KHULNAMEHERPUR15.261
40.      KHULNAKUSHTIA3.664
41.      MYMENSINGHJAMALPUR51.14
42.      MYMENSINGHMYMENSINGH50.56
43.      MYMENSINGHSHERPUR48.47
44.      MYMENSINGHNETRAKONA35.324
45.      RAJSHAHISIRAJGANJ38.720
46.      RAJSHAHINATORE35.125
47.      RAJSHAHIPABNA31.531
48.      RAJSHAHIRAJSHAHI31.432
49.      RAJSHAHIJOYPURHAT26.740
50.      RAJSHAHICHAPAI NABABGANJ25.348
51.      RAJSHAHINAOGAON16.958
52.      RAJSHAHIBOGRA16.659
53.      RANGPURKURIGRAM63.71
54.      RANGPURGAIBANDHA488
55.      RANGPURRANGPUR46.210
56.      RANGPURDINAJPUR37.922
57.      RANGPURNILPHAMARI34.827
58.      RANGPURLALMONIRHAT34.528
59.      RANGPURTHAKURGAON2739
60.      RANGPURPANCHAGARH26.741
61.      SYLHETSUNAMGANJ2643
62.      SYLHETMAULVIBAZAR25.746
63.      SYLHETHABIGANJ25.349
64.      SYLHETSYLHET24.151

Source : District wise poverty head count ratio  which published in World Bank website in  November 10, 2016

5.4 GIS Maps on selected 16 District Councils from rank (poorer & richer) from Divisions

Figure 14: Selected District council on map, Prepared by Z M Sajjadul Islam ,

Table 12  : Total 183 A-Type Municipality/Pourashava   of Bangladesh : Data source : BBS HIES 2011, National Report-Vol 3, Urban area report in August 2014

SLDivisionDistrictPourashavaA-Type PourashavaArea (sq. km.)WardPopulation (Both sex)Population DensityLiteracy Rate(7+years)HouseholdMulti Hazard
1KhulnaBagerhatMorrelganjA6921741        3,62473.85070Severe tidal flooding
2KhulnaBagerhatBagerhatA7.53949073         6,51775.811982Low river flooding
3KhulnaBagerhatMonglaA19.4939837         2,05364.18927Moderate tidal surge
4ChattogramBandarbanBandarbanA13.05941434         3,17567.18699Not Flood prone
5BarishalBargunaAmtaliA11.85917311         1,46168.74067Severe tidal surge
6BarishalBargunaBargunaA15.57932235         2,07075.97353Severe tidal surge
7BarishalBarishalBakerganjA6.22915418         2,47976.73395Moderate tidal surge
8BarishalBarishalGouranadiA16.83942438         2,52268.99417Not Flood prone
9BarishalBarishalMuladiA16.96920490         1,20862.64528Low river flooding
10BarishalBholaBholaA22.66947477         2,095769635Moderate tidal surge
11BarishalBholaBurhanuddinA3.22913110         4,071692649Moderate tidal surge
12BarishalBholaCharfassionA9.49919595         2,06575.44088Moderate tidal surge
13BarishalBholaLalmohanA6.53920522         3,14360.34218Moderate tidal surge
14RajshahiBoguraBoguraA68.6321400983         5,84372.493351Not Flood prone
15RajshahiBoguraDhupchanchiaA10.35922406         2,16561.65401Not Flood prone
16RajshahiBoguraNandigramA19.38918496            95456.34528Not Flood prone
17RajshahiBoguraSantaharA10.2931037         3,04362.17847Not Flood prone
18RajshahiBoguraSherpurA7.7925152         3,26674.55678Low river flooding
19ChattogramBrahmanbariaAkhauraA17.69172017         9,7746633517Moderate river Flooding
20ChattogramBrahmanbariaBrahmanbariaA22.4912193814         8,61864.437329Moderate Flash Flooding
21ChattogramBrahmanbariaNabinagarA14.14953157         3,75951.210539Moderate river Flooding
22ChattogramChandpurChandpurA22.9115159021      33,32267.435813Severe river Flooding
23ChattogramChandpurChengarcharA27.23936691         7,88459.27884Severe river Flooding
24ChattogramChandpurHaziganjA20.25963892         3,15566.212679Low river flooding
25ChattogramChandpurKachuaA11.23927024         2,40663.35125Low river flooding
26ChattogramChandpurMatlabA30.92959286         1,9176313682Moderate river Flooding
27ChattogramChandpurShahrastiA15.65928287         1,807675815Low river flooding
28RajshahiChapai NawabgChapai NawabganjA32.915180731      39,42260.839422Moderate river Flooding
29RajshahiChapai NawabgRohanpurA14.42934941         2,42356.57614Low river flooding
30RajshahiChapai NawabgShibganjA23.68942693         1,80351.99023Moderate river Flooding
31ChattogramChattogramBariarhatA2.12911602         5,473542354Severe tidal surge
32ChattogramChattogramBashkhaliA28.42936910         1,29942.37378Moderate Flash Flooding
33ChattogramChattogramChandanaishA26.83935248         1,31461.46852Moderate Flash Flooding
34ChattogramChattogramHathazariA9.37934015         3,63068.96416Moderate Flash Flooding
35ChattogramChattogramPatiyaA9.95955323         5,56064.310613Moderate Flash Flooding
36ChattogramChattogramRaojanA27.15959148         2,17963.311460Moderate Flash Flooding
37ChattogramChattogramSatkaniaA12.51945001         3,59761.48548Not Flood prone
38ChattogramChattogramSitakundaA27.97945147         1,61462.19017Severe tidal surge
39KhulnaChuadangaAlamdangaA6921741         3,62473.85070Low river flooding
40KhulnaChuadangaChuadangaA37.379128865         1,86757.430927Low river flooding
41ChattogramCox’s BazarChakoriaA15.76972669         4,61161.313163Severe Tidal Flooding
42ChattogramCox’s BazarCox’s BazarA7.9412223522         9,14254.541517Not Flood prone
43ChattogramCumillaChouddagramA16.64938317         2,303637629Moderate river Flooding
44ChattogramCumillaLakshamA19.86970632         3,55660.314079Moderate river Flooding
45ChattogramCumillaNangalkotA13.06926719         2,04652.65194Not Flood prone
46DhakaDhakaDhamraiA6.98956777         8,13466.714380Low river flooding
47DhakaDhakaDoharA11.28917735         1,57261.536434Severe river Flooding
48DhakaDhakaSavarA13.549296851      21,92474.975902Low river flooding
49RangpurDinajpurDinajpurA20.6712191329         8,6977542034Low Flash Flooding
50RangpurDinajpurSetabganjA10.23927335         2,67262.67128Low Flash Flooding
51RangpurDinajpurBirampurA27.53945334         1,64759.710802Not Flood prone
52RangpurDinajpurFulbariA16.04934786         2,16962.38170Not Flood prone
53RangpurDinajpurParbatipurA6.67929143         4,36964.57299Not Flood prone
54DhakaFaridpurBhangaA12.43934148         2,74761.57505Moderate river Flooding
55DhakaFaridpurBoalmariA13.42927595         2,05654.66016Moderate river Flooding
56DhakaFaridpurFaridpurA19.079122425         6,18977.127574Moderate river Flooding
57ChattogramFeniSonagaziA5.33919866         3,72762.83784Severe tidal flooding
58ChattogramFeniDaganbhuiyanA12.76932080         2,51465.16144Low river flooding
59ChattogramFeniFeniA2218156971         7,13569.731468Not Flood prone
60RangpurGaibandhaGaibandhaA11.29967833         6,00874.515430Moderate river flooding
61RangpurGaibandhaGobindaganjA14.47938415         2,65554.89718Low river flooding
62DhakaGazipurKaliakoirA24.669213061         6,0196943704Not Flood prone
63DhakaGazipurSreepurA46.99126249         2,69263.331470Low river flooding
64DhakaGopalganjKotaliparaA2.0595808         2,833781240Not Flood prone
65DhakaGopalganjTungiparaA2.5998596         3,319631754Moderate river Flooding
66DhakaGopalganjGopalganjA14.25951346         3,60378.611600Moderate river Flooding
67SylhetHabiganjChunarughatA7.99919651         2,45955.93889Severe Flash Flooding
68SylhetHabiganjHabiganjA8.97969512         7,74971.313517Low Flash Flooding
69SylhetHabiganjMadhabpurA7.7921930         2,84850.24077Low Flash Flooding
70SylhetHabiganjNabiganjA9.7923989         2,47350.94381Severe Flash Flooding
71SylhetHabiganjShayestaganjA6.35923314         3,67157.54513Severe Flash Flooding
72MymensinghJamalpurJamalpurA53.2812142764         2,71862.135619Low river flooding
73MymensinghJamalpurMelandahaA12.959  31,320   2,418.5345.77615Moderate tidal surge
74KhulnaJashoreBenapoleA11.15936524   3,275.7056.98563Low river flooding
75KhulnaJashoreJashoreA14.719237478         8,31576.754496Low river flooding
76KhulnaJashoreKeshabpurA12.41926229         2,114636330Low river flooding
77KhulnaJashoreNoaparaA25.11985856         3,41963.721267Low river flooding
78BarishalJhalokathiJhalokathiA16.13954029         3,35077.912399Moderate tidal surge
79KhulnaJhenaidahJhenaidahaA44.339107834         2,49467.225286Low river flooding
80KhulnaJhenaidahKaliganjA15.89945341         2,85365.110637Low river flooding
81KhulnaJhenaidahKotchandpurA17.04933094         1,94262.37943Low river flooding
82KhulnaJhenaidahMaheshpurA21.27927670         1,30153.66687Low river flooding
83KhulnaJhenaidahShailkupaA20.92935271         1,68654.18507Low river flooding
84RajshahiJoypurhatAkkelpurA15.99924227         1,51563.26281Not Flood prone
85RajshahiJoypurhatKalaiA13.11916464         1,256544411Not Flood prone
86RajshahiJoypurhatPanchbibiA9.63922475         2,33469.45510Not Flood prone
87RajshahiJoypurhatJoypurhatA18.55969033         3,72177.916843Not Flood prone
88ChattogramKhagrchhariKhagrachhariA13.05947278         3,6237110247Not Flood prone
89KhulnaKhulnaPaikgachhaA5.53916017         2,89665.93788Severe tidal surge
90DhakaKishoreganjBhairabA15.719118992         7,57453.624057Moderate river Flooding
91DhakaKishoreganjKishoreganjA11.39103798         9,18672.521879Low river flooding
92RangpurKurigramKurigramA27.04977252         2,85763.217159Moderate river Flooding
93RangpurKurigramNageswariA42962289         1,48349.715298Moderate river Flooding
94KhulnaKushtiaKumarkhaliA10.5921914         2,08763.65276Moderate river Flooding
95KhulnaKushtiaKushtiaA13.329102988         7,73274.823037Moderate river Flooding
96RangpurLalmonirhatLalmonirhatA17.62960322         3,4236613897Moderate river Flooding
97RangpurLalmonirhatPatgramA12.49930565         2,44749.76379Low river flooding
98ChattogramLaxmipurLaxmipurA19.42983112         4,28063.917009Low river flooding
99ChattogramLaxmipurRaipurA10.02930756         3,06960.86593Low river flooding
100ChattogramLaxmipurRamganjA26.16944775         1,71263.19055Low river flooding
101DhakaMadaripurKalkiniA27.78941608         1,49855.38815Moderate river Flooding
102DhakaMadaripurMadaripurA14.22962690         4,40973.114112Moderate river Flooding
103DhakaMadaripurShibcharA8.02924154         3,01265.95527Moderate river Flooding
104KhulnaMaguraMaguraA43.92998355         2,2396622105Moderate river Flooding
105DhakaManikganjManikganjA23.14971698         3,09869.116459Low river flooding
106KhulnaMeherpurMeherpurA16.9925500         1,50966.36488Low river flooding
107SylhetMoulvibazarKulauraA11.25926150         2,32465.54993Not Flood prone
108SylhetMoulvibazarMoulvibazarA10.36956537         5,4576510840Not Flood prone
109SylhetMoulvibazarSreemongalA2.3923031      10,01366.54825Not Flood prone
110DhakaMunshiganjMirkadimA2.87944145      15,38258.99912Moderate river Flooding
111DhakaMunshiganjMunshiganjA2.87944145      15,38258.99912Moderate river Flooding
112MymensinghMymensinghBhalukaA10.04938774         3,86273.89787Not Flood prone
113MymensinghMymensinghGafargaonA5.39929325         5,44167.76513Low river flooding
114MymensinghMymensinghPhulpurA8.8925570         2,90664.75583Low river flooding
115MymensinghMymensinghIshwarganjA12.41928631         2,307585917Not Flood prone
116MymensinghMymensinghMuktagachaA12.57949915         3,97160.211189Low river flooding
117MymensinghMymensinghPhulpurA10.1925628         2,53753.95774Low river flooding
118MymensinghMymensinghTrishalA15.48934747         2,245617202Not Flood prone
119RajshahiNaogaonNaogaonA37.089150549         4,06065.135923Not Flood prone
120RajshahiNaogaonNazipurA11.82921670         1,83369.65315Low river flooding
121KhulnaNarailNarailA26.9942299         1,57281.79945Moderate river Flooding
122DhakaNarayanganjTaraboA19.399150709         7,77358.738612Low river flooding
123DhakaNarsingdiGhorashalA25.37985949         3,38866.618868Low river flooding
124DhakaNarsingdiMadhabdiA5.1949583         9,72263.911323Low river flooding
125DhakaNarsingdiNarsingdiA14.759185128      40,66164.48837Low river flooding
126RajshahiNatoreBanparaA9.0699975         1,10162.12557Not Flood prone
127RajshahiNatoreGurudaspurA13.61932807         2,41154.68287Low river flooding
128RajshahiNatoreNatoreA14.84981203         5,4727318828Not Flood prone
129RajshahiNatoreSingraA29.39933192         1,12956.87955Low river flooding
130MymensinghNetrokonaMohanganjA6.97927193         3,90165.85786Low river flooding
131MymensinghNetrokonaNetrokonaA29.39991936         3,12867.119627Low river flooding
132RangpurNilphamariNilphamariA9.42917027         1,80864.24011Not Flood prone
133RangpurNilphamariSaidpurA24.889133433         4,44263.927515Not Flood prone
134ChattogramNoakhaliBasurhatA6.85929877         4,36262.55512Severe tidal flooding
135ChattogramNoakhaliChatkhilA13.81931395         2,27370.16084Low river flooding
136ChattogramNoakhaliChoumuhaniA14.489132948         3,74563.624091Low river flooding
137ChattogramNoakhaliNoakhaliA16.679107654         6,45875.320222Low river flooding
138ChattogramNoakhaliSonaimuriA13.11934218         2,610626162Low river flooding
139RajshahiPabnaBhanguraA5.13920606         4,01756.64712Moderate river Flooding
140RajshahiPabnaChatmoharA3.28914443         4,40376.33377Moderate river Flooding
141RajshahiPabnaFaridpurA9.63914010         1,455563203Moderate river Flooding
142RajshahiPabnaBeraA16.42950068         3,04952.211012Moderate river Flooding
143RajshahiPabnaIshwardiA19.59966255         3,38265.215332Low river flooding
144RajshahiPabnaPabnaA27.2715144442         5,29776.233217Low river flooding
145RajshahiPabnaSanthiaA26.29938704         1,47247.99319Moderate river Flooding
146RajshahiPabnaSuzanagarA11.08925461         2,29844.65833Severe river Flooding
147RangpurPanchagarhPanchagarhA20.72945589         2,20070.310105Low Flash Flooding
148BarishalPatuakhaliBauphalA7.96911435         1,43779.92538Moderate tidal surge
149BarishalPatuakhaliGalachipaA3.39921200         6,25471.54967Severe tidal surge
150BarishalPatuakhaliKalaparaA3.75917332         4,62275.14347Severe tidal surge
151BarishalPatuakhaliPatuakhaliA12.66965000         5,13475.813994Moderate tidal surge
152BarishalPirojpurMathbariaA4.01918375         4,58277.94330Severe  tidal surge
153BarishalPirojpurPirojpurA29.49960056         2,03677.813646Moderate tidal surge
154BarishalPirojpurSwarupkathiA4.98920019         4,02079.33985Moderate tidal surge
155DhakaRajbariGoalandaA4.85918663         3,84858.54156Severe river flooding
156DhakaRajbariPangshaA12.57929098         2,31567.76569Moderate river Flooding
157DhakaRajbariRajbariA11.65956313         4,83474.312657Moderate river Flooding
158RajshahiRajshahiBaghaA11.69927623         2,36355.47044Low river flooding
159RajshahiRajshahiCharghatA18.72938409         2,05262.19105Moderate river Flooding
160RajshahiRajshahiGodagariA14.29939766         2,783538008Moderate river Flooding
161RajshahiRajshahiKakonhatA19.25916569            86144.43997Drought Prone
162RajshahiRajshahiNaohataA40.46957119         1,41256.514045Not Flood prone
163RajshahiRajshahiTaherpurA10.84917944         1,65554.44469Not Flood prone
164ChattogramRangamatiRangamatiA64.75984000         1,29773.118355Not Flood prone
165KhulnaSatkhiraSatkhiraA32.399113322         3,49969.326896Moderate tidal surge
166DhakaShariatpurDamuddyaA5.38914242         2,64764.53274Moderate river Flooding
167DhakaShariatpurShariatpurA24.92949535         1,98862.510908Moderate river Flooding
168MymensinghSherpurSherpurA46.99126249         2,69263.331470Not Flood prone
169RajshahiSirajganjBelkuchiA19975364         3,96749.616229Severe Flash Flooding
170RajshahiSirajganjShahjadpurA11.07964507         5,82756.114226Moderate river Flooding
171RajshahiSirajganjSirajganjA28.499158913         5,57863.235556Severe Flash Flooding
172RajshahiSirajganjUllaparaA12.07947693         3,95161.910526Low river Flooding
173SylhetSunamganjChhatakA11.98944364         3,70355.67824Severe Flash Flooding
174SylhetSunamganjSunamganjA17.31965332         3,77460.511926Severe Flash Flooding
175SylhetSylhetGolapganjA16.5932444         1,96662.25652Moderate river Flooding
176SylhetSylhetBeanibazarA12.39942030         3,39263.57709Not Flood prone
177DhakaTangailGhatailA8.88935245         3,96972.17668Low river flooding
178DhakaTangailGopalpurA23.15950160         2,16749.512539Low river flooding
179DhakaTangailMadhupurA25956342         2,25456.713713Not Flood prone
180DhakaTangailSakhipurA13.77930028         2,18157.67473Not Flood prone
181DhakaTangailTangailA33.818167412         4,95371.837607Low river flooding
182RangpurThakurgaonPirganjA29.41927700            94253.86541Low Flash Flooding
183RangpurThakurgaonThakurgaonA30.03980589         2,68474.318015Low Flash Flooding

6.0  Reference :

  1.  World Bank interactive poverty map Used 2010 Bangladesh Poverty Maps, the 2011 Census of Population and Housing sample available from the Integrated Public Use Microdata Series project (IPUMS), and the 2012 Undernutrition Maps of Bangladesh.
  2. The 2010 Bangladesh Poverty Maps technical report describing the metholody used to construct the zila and upazila national poverty statistics can be accessed at the following link:                  
  3. http://www.worldbank.org/en/news/feature/2014/09/30/poverty-maps
  4. The Population and Housing Census sample (IPUMS)  dataset can be accessed at the following link: )      https://international.ipums.org/international-action/sample_details/country/bd
  5. The undernutrition maps produced by the World Food Program (WFP) are available at the following link:      https://www.wfp.org/content/undernutrition-maps-bangladesh-2012
  6. Detailed information describing the construction of the variables and sources is presented below.     
  7.  Poverty (among the population):                      
  8. Poverty headcount ratio (%): Percentage of the population that lives below the official national upper poverty line.                                                                                                                                                    
  9. Extreme poverty headcount ratio (%): Percentage of the population that lives below the official national lower poverty line.                                                                                                                                               
  10. Percentage of population in bottom 40%: Percentage of the population in the zila/upazila  that belongs to the bottom 40% of the national real per capita consumption distribution.

Source: Indicators 5, 6, and 7 come from 2010 Bangladesh Poverty Maps. The total number of poor, extreme poor, and population that belongs to the bottom 40% were computed using indicators 5, 6, 7 and indicator 1 (Total population in the zila/upazila).                                                                                                                 

3.  Primary Employment (among working population):                                                                                    

  1. Employment in  Agriculture: If employed, sector of employment is agriculture.                                              
  2. Employment in    Industry: If employed, sector of employment is industry.                                                      
  3. Employment in   Services: If employed, sector of employment is services.                                       

Source: Indicators 16, 17, and 18 were constructed using Question 25 from the 2011 Census of Population and Housing. Question 25 was asked for persons 7 years of age and older who reported being employed. Question. If employed, field of employment 1) Agriculture , (2) Industry, 3) Service    

  GIZ NCVA (nationwide climate vulnerability assessment in Bangladesh) , Dec 2018,

  • National Water Rescue Database ( NWRD, 2011), Bangladesh Delta Plan(BDP) 2100,  CEGIS

Please contact for conducting Urban Risk and Vulnerability Assessment of your country at WhatsApp + 88 01711979179 , Skype: zmsajjad, Email : zmsajjad@yahoo.com

Leave a Reply

Your email address will not be published. Required fields are marked *

One Response

  1. Please contact for conducting Urban Risk and Vulnerability Assessment for Urban Centers of your country

Leave a Reply

Your email address will not be published. Required fields are marked *